
Sui Lutris:
Combining Broadcast and
Consensus in a Production
Blockchain System

UCL 2023 | NOVEMBER | 2023

George Danezis
Professor, University College London, g.danezis@ucl.ac.uk
Chief Scientist, Mysten Labs, george@mystenlabs.com

mailto:g.danezis@ucl.ac.uk

Introductions

22

● Microsoft Research,
Researcher, 2007-2013

● University College London,
Prof. of Security and Privacy Engineering, 2013 - Now

● Chainspace, Co-founder,
Head of Research, 2018

● Facebook Novi, Libra / Diem Blockchain
Principal Researcher, 2019 - 2021

● Mysten Labs, Co-founder, Sui Blockchain
Chief Scientist, 2021 - Now

Involved in:
Vega Protocol
Nym Technologies
Celestia
Linera

What Makes a Blockchain?

3

Distributed / Replicated Transaction Processing

Sybil Resistance / permission-less-ness

Tokenomics / incentives / gas

High-integrity Data Structures

Today we talk about this

Lots to say, another time

Privacy

Replicated Transaction Processing ala
State Machine Replication (SMR)

44

User
Transactions

Broadcast
Blocks

Mempool Sequencing Execution
& Storage Blocks

Peer-to-peer
network

BFT Consensus
Longest Chain

Deterministic!
EMV, MOVE, BPF

Merkle Trees Hash
Chains Signatures

Blockchain
Context

Vega Protocol. Danezis, G., Hrycyszyn, D., Mannerings, B., Rudolph, T., & Šiška, D. (2019).
State machine replication in the libra blockchain. Baudet, Mathieu, Avery Ching, Andrey Chursin, George Danezis, François
Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. The Libra Assn., Tech. Rep 7 (2019).

State Machine Replication (SMR)
and its Discontents

55

● Chaos Reigns

● Little Research
BFT troubles,

● Latency, scaling

● Seconds to
Minutes latency

● Tolerance to
malicious/failed
validators

● Low throughput

● Hard to build

● Single Thread
execution

● VMs upon VMs

● Storage Limits

● Slow

● Expensive to
maintain MT

● Interplay between
CPU / store

● Batching = latency

User
Transactions

Broadcast
Blocks

Mempool Sequencing Execution
& Storage Blocks

66

Solutions within the SMR Architecture

User
Transactions

Broadcast
Blocks

Mempool Sequencing Execution
& Storage Blocks

Narwhal
Mempool

Tusk
(Bullshark)/ Parallel Execution

Block STM Chainspace

Leveraging
multiple
hosts/cores
per validator
to scale?

Lower
Latency?Narwhal and Tusk: a DAG-based mempool and efficient BFT consensus. George Danezis, Lefteris

Kokoris-Kogias, Alberto Sonnino, Alexander Spiegelman: EuroSys 2022: 34-50. Block-STM: Scaling
Blockchain Execution by Turning Ordering Curse to a Performance Blessing.
Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia Malkhi,
Yu Xia, Runtian Zhou: PPoPP 2023: 232-244
Chainspace: A Sharded Smart Contracts Platform. Mustafa Al-Bassam, Alberto Sonnino,
Shehar Bano, Dave Hrycyszyn, George Danezis: NDSS 2018

77

You do not need consensus to have a
cryptocurrency (Guerraoui et al)

BUT No liveness for incorrect initiator / many
uncoordinated initiatiators

Consensus-less
Agreement based
Cryptocurrencies

FastPay: High-Performance Byzantine Fault Tolerant Settlement.
Mathieu Baudet, George Danezis, Alberto Sonnino:
AFT 2020: 163-177

Use weaker primitive:
Consistent / Reliable Broadcast

● One channel initiator (broadcast)
● Many replicas (decide broadcast

value) < ⅓ byzantine

Informal properties:
● Safety: if two replicas reach a decision

on a broadcast value its the same!
● Liveness: a correct initiator can always drive

to reaching a decision

One channel per coin,
broadcast value is the new
owner / channel initiator

Consistent Broadcast

88

V1

V2

V3

V4

Initiator
Co, Bob pk,
sig(Alice)

⅔ Signatures
-> Certificate

CertificateAlice has a coin c0.
She wants to send it to Bob

Initially all read (c0, Alice pk).

Correct Replica signs first authenticated
request.

After all set (c0, Bob pk)

What happens if 1 corrupt?
What happens if sender corrupt?

Read (c0, Alice pk) Set (c0, Bob pk)

sign

Fastpay and its Discontents

9

Fastpay 40K - 160K payments/s
45-75 1-core shards

200ms-300ms
finality Not bad!

Account associated with address, sequence number and balance.
A signed sequenced transaction transfers some of the balance to another / new account, update seq.

● How to extend to generic smart contracts?
● How to generate a canonical history of the replicated system?
● How to allow multi-owner objects?
● How to allow committee reconfiguration?
● Privacy? (Zef)
● How to unlock locked objects?

But:

Zef: Low-latency, Scalable, Private Payments. Mathieu Baudet, Alberto Sonnino, Mahimna Kelkar, George Danezis: CoRR
abs/2201.05671 (2022). Linera start-up

1010

How to Combine a
Fast Path & Consensus Path?

● General smart contract platform
(MoveVM + Objects)

● Fast path / low latency / simple scaling
for owned objects

● Consensus path to support shared objects
● Parallel execution / early finality
● Chekpoints & reconfiguration

 Scale via validators using many core / hosts

Many things happen
at the same time.

Safety / consistency
despite this!

Integrated as the base mechanism in the
Sui Blockchain!

1111

X-Ray of a Sui Validator

Consensus
Sequence Certs

Other Validators
Full node syncCheckpoint

Assign Version

Execute

Store

Quorum of Effects
Settlement Finality

Check Transaction

Check Certificate

Submit
User Tx

Commit To Effects
Fast Path

Gather Signatures
Aggregate Form
Certificate

Other Validators

Quorum of ack
Irrevocable
(Transaction Finality)

1212

X-Ray of a Sui Validator

Consensus
Sequence Certs

Other Validators
Full node sync

Assign Version

Check Transaction

Check Certificate

Submit
User Tx

Commit To Effects

Gather Signatures
Aggregate Form
Certificate

Other
Validators

SMR machinery (Critical
single thread regions)

Downstream of Common
Machinery (Consistency!)

Common Machinery
(Consistency!)

Quorum of Effects
Settlement Finality

Fast Path

Quorum of ack
Irrevocable
(Transaction Finality)

Fast path machinery
(Parallelize all parts!)

Execute

Store

Checkpoint

1313

Simplified Data Model

Input Objects:
(ObjID, Version)

Command:
(pkg, name, args)

Signature

User Transaction
Owned Objects
(current version)

Shared Objects
(initial version)

Object Store

(ObjID, Version)

Owner
(owned<Address> / shared)
Move Type
Data (Move Struct)

Owned Object Locks

(ObjID, Version) Option<TxID> Atomic: check on
Empty key & updateState machine: Authenticated Transactions

consume object versions, and create new
object versions

1414

Fast Path: Validator View

● Signature?
● Objects exist?
● Owner correct?
● Test & set this Tx

in owned object
locks (Atomic!)

● >⅔ stake signed
● all local checks
● Owned only?
● Sequence

Check Transaction Check Certificate

Send User Tx
To all Validators

All mutable owned
object must belong to
the user that signs!

Collect > ⅔ stake
Signatures Aggregate
into certificate

Local
checks

> ⅔ stake
Transaction
Finality

> ⅔ stake
Settlement Finality

Ack

Send to Fast
Path Execution

Seq, Exec, Store

Effects

1515

Fast Path: Validator View

Assume < ⅓ stake is byzantine, asynchronous network, crypto works.

● No other certificate exists containing one or more input owned objects at the same
(ObjId, version).

● Certificates exist on correct validators to generate all inputs versions and execute the
transaction certified.

If a certificate on a Tx exists:

The world of transactions is potentially inconsistent.
The world of certificates is consistent with respect to owned objects.

1616

Finality: “Irrevocable and Unconditional”

● 2 round trips + processing
● > ⅔ stake Acks after checking certificate
● Guarantee despite failures, malice, epoch change, and concurrent processing

Transaction Finality: a transaction will execute and cannot be cancelled

● > ⅔ same effects after execution
● Before blocks / checkpoints are formed

Settlement Finality: effects are known and ready to use (assets changed hands)

Checkpoints and Reconfiguration must respect finality guarantees.

1717

Execution: Parallel on all cores

● Transaction
● Move Command
● Move Parameters
● Objects at

(ObjId, version)

MoveVM + Adaptor

DB

Query
(ObjId, Version)

Transaction
Certificate

DBEffects

New locks
table enties

Lamport Timestamp (max(v_in) +1)
Fresh ObjIDs using hash of TxIDUse eventually consistent stores, ready to

extend to multiple hosts.

Object Mutated: (ObjId, version’, …)
Objects Created: (ObjId, version’, …)

Objects Deleted: (ObjId, version’)
Status, Events, …

1818

Shared Objects: What is the challenge?

Disparate users may include the same object as an input to their transaction.

Cannot coordinate to not re-use the same version or have consistent versions.

System must assign the versions!

● Sequence Certificates with shared objects

● Statically assign shared object a version number without execution

Shared Object Critical Path:

1919

Shared Object Path

World of Effects is consistent!

Statically derive next
lamport timestamp

Parallel execution as for owned
object transactions

Shared locks

Tx ↦ (ObjId, version)

Next Version

ObjId ↦next version

Execution now knows what
shared object version to use
for each certificate

Consensus
(Narwhal / Bullshark) Checkpoints

Assign Shared
Obj next version

Common Sequence
of Certificates

If contains
Shared objects

Execution
& Storage

Effects include
shared object versions

2020

Checkpoints

● If a certificate is sequenced eventually all previous certificates will be sequenced to
create a full causal sequence of all final transactions.

● Eventually all final transactions will be included in an epoch checkpoint.

Theorems:

Want a shared causal history of all executed certificates. Finality is Earlier!
Validator Sync, Archival, Epoch Change, Full Node, Completeness, …

All certificates are sequenced, but may be out of causal order ⇒ need to wait
for certificates to “fill in the gaps”

When a Validator accepts a certificate it will not close the epoch until it is checkpointed.

2121

Reconfiguration & Epoch Change

1. Validators stop signing new transactions, to make new certificates.
2. When all certificates received / executed locally are checkpointed,

A validator votes to close the epoch.

2-step process:

When > ⅔ stake validators vote to close the epoch (in the checkpoint) the epoch ends.
Others may have to revert executions (1-step at most).

Theorem: all final transactions will be within the checkpoints by the end of the epoch.

Reset all the owned object locks for the new epoch ⇒ Alleviate loss of liveness.

2222

Integration into a
Production System: Sui

350K LOC of code (~30K
subsystem we discussed)

~8400 commits

Researchers:
+60K LOC Initial fastpay +
NW/BS prototypes

1.5 years, team of 70
Eng at the end

Devnet since March 2022,
3 Testnets

Testnet (30 Apr)
● 42K Move packages
● 780M Objects
● 269M PTBs
● 2.5M Checkpoints
● ~300 TPS organic
● Induced 130K TPS peak

(transfers / large batches in PTB)

Today:
Single machine
multi-core
implementation.
Focus on latency of
owned object path.

Future:
More Aggressive
Multi-core and
multi-host.
Focus on latency
scaling, shared
object paths.

Key metrics May 2023 - Nov 2023

23

920.16M Transaction Blocks 8.97M Addresses 7.9K Packages 61M Objects

What we have not talked about…

2424

Programmable Transaction Blocks Move Verifier

Wrapping / Unwrapping objects Transaction Verifier

Objects own other objects SDKs, APIs

Dynamic child fields / lookup Read Interfaces

Object deletion Indexing

Networking, DB, Sync, … Crypto Econ / Gas / Stake

2525

What kind of performance are we looking at?

● ~500ms latency to transaction / settlement finality
● 200K-300K TPS for simple payments with PTB

10K TPS for single Tx PTB

● ~500ms to transaction finality 3s-7s p50
settlement finality (NW / Bullshark)

● 7K TPS for shared counter single Tx PTB

Owned Object Transactions
(Optimized path)

Shared Object Transactions
(Conservative for Stability)

Next step lower NW / BS latencies
Add more workers (1 now!)
Integrate better fast / consensus path.

Geo-distributed but homogenous
100 validator network, May 2023

The Cutting Edge

26

Lefteris Kokoris-Kogias, Alberto
Sonnino, George Danezis:
Cuttlefish: Expressive Fast Path
Blockchains with FastUnlock.
CoRR abs/2309.12715 (2023)

Kushal Babel, Andrey Chursin, George
Danezis, Lefteris Kokoris-Kogias,
Alberto Sonnino:
Mysticeti: Low-Latency DAG
Consensus with Fast Commit Path.
CoRR abs/2310.14821 (2023)

Mathieu Baudet, Alberto Sonnino,
Mahimna Kelkar, George Danezis:
Zef: Low-latency, Scalable,
Private Payments. CoRR
abs/2201.05671 (2022)

2727

Conclusion

Sui Lutris: A Blockchain Combining Broadcast and Consensus. Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Sonnino, Brandon Williams, Lu Zhang. Technical Report (2023).

Production systems need to combine
research design patterns to get the right
mix of features, robustness, scaling,
performance.

How to preserve safety and liveness in
these systems (CPU, DB, Network,
Replication, Reads, Writes) is also an
exciting research area.

28

