
Giorgos Tsimos, Anastasios Kichidis, Alberto Sonnino, Lefteris Kokoris-Kogias

HammerHead
Leader Reputation for Dynamic Scheduling

De-f

Web3/W3 gaming

Digital Currencies

E-commerce

Blockchain

Underlying Protocols

Byzantine Atomic Broadcast

• parties, byzantine (malicious)

• Parties send messages during several rounds

• One designated sender per message sent

• Sender wants to send its input value to all

n f

Byzantine Atomic Broadcast

1. Agreement: All good nodes will get the same messages

2. Integrity: Every good node gets at most one message per round/sender

3. Validity: If a good node sends a message, all good nodes get it

4. Total Order: All good nodes get messages in the same order

Even with one node sending everything, properties are satisfied!

Fairness and Crash Faults

• Optimally, we would like every node to add proportionally equally many blocks

• Fairness

• BUT

• If previously good nodes crash and are chosen as leaders, they cause long
latency/low throughput

• Can we achieve fairness and avoid crashed leaders?

DAG consensus

• Consensus protocols with an underlying DAG structure for message
dependencies

• Line of work: Bullshark, Narwhal-Tusk, Shoal, HammerHead…

• Adopted by systems like Sui

• Allow for blockchains with improved throughput in comparison

Chained vs DAG Consensus

• For chained consensus, Carousel [FC’22] provided a solution with dynamic
leader election

• Achieves Leader Utilization: bounds the amount of faulty leaders

• And Chain Quality: ~ %committed blocks %good nodes

• How about DAG-based consensus protocols?

≡

In this talk

• We design a DAG-based BAB protocol on top of Bullshark, with dynamic
leader election via reputation, that achieves Leader Utilization

• We show

• How to instantiate leader reputation in DAG consensus

• How to utilize leader reputation for BAB protocols with:

• Leader Utilization

• Improved practical crash-recovery

Reputation

• Each node keeps track of a score for every other node

• The score depends on events upon the DAG

• It captures the “responsiveness” of nodes during current epoch

• If votes in round for the proposal of the leader of round , then set Pi r r − 1
𝗌𝖼𝗈𝗋𝖾𝗌(Pi) + = 1

DAG view of party Pj

Round r − 1 Round r

Set += 1𝗌𝖼𝗈𝗋𝖾𝗌j(i)

Reputation

• View of different parties might differ

• Remember DAG property: If vertex u is added to , then its entire causal
history is also in

• So, when committing anchor A, recompute scores based on the new subdag
history up to A (which is committed and fixed).

DAGi
DAGi

New
committed
anchor A

Previous anchor

Computed
Scores

Update scores
based on
votes

Leader Selection

• We want to disallow recently unresponsive nodes from leaders

• We utilize the reputation scores

• If a node has low score for past epoch, it was unresponsive/crashed

• Disallow node from being elected for the next epoch

• Leader set for epoch: most responsive nodes of previous epoch

• based on reputation

• The worst are disallowed

• the rest are elected per round with some (stake-based) probability

≥ 2f + 1

≤ f

Schedule updates

• Schedule-change frequency: T

• activeSchedule : contains auxiliary info related to the current schedule, i.e.

• initialRound

• LeaderSet : information regarding the set of active leaders for the epoch,
i.e. the set of good leaders and their scores (for weighted draw).

• scores : DS that maintains a score value for each node. When a schedule
change is to occur, scores are updated according to the subDAG of that
epoch.

How about safety-liveness issues?

Last Committed Anchor

v

Current Round

Schedule S

Round r

TryCommitting(v)

Newly Committable Anchor

v Schedule S

Round r

Forward Update

TryCommitting(v)

Last Committed Anchor Current RoundNewly Committable Anchor

v Schedule S

Schedule S’

Round r

TryCommitting(v)

Schedule
change to
S’

Forward Update

RESOLVED

Last Committed Anchor Current RoundNewly Committable Anchor

Round
(Schedule Change)

i ⋅ T

v Schedule S

Schedule S’Anchor
according to S’

Round r

Schedule
change to
S’

Round
(Schedule Change)

i ⋅ T

Forward Update

RESOLVED RERUN

TryCommitting(v)

Last Committed Anchor Current RoundNewly Committable Anchor

v Schedule S

Schedule S’Anchor
according to S’

Round r

Schedule
change to
S’

Round
(Schedule Change)

i ⋅ T

Forward Update

RESOLVED RERUN UNKNOWN

TryCommitting(v)

Last Committed Anchor Current RoundNewly Committable Anchor

Implementation

• HammerHead is deployed in Sui mainnet (since v1.9.1)

• Open-source: https://github.com/asonnino/sui/tree/hammerhead
(commit 03c96a3)

• Tests show:

• No throughput loss in ideal conditions (no faults)

• Improved latency/throughput against crash faults

• No persistent throughput loss when crash faults occur

Without crash faults

With crash faults

In this work

• We designed a DAG-based BAB protocol with dynamic leader election
via reputation, that achieves Leader Utilization

• We instantiated leader reputation in DAG consensus

• We utilized leader reputation for BAB protocols with Leader Utilization
and improved practical crash-recovery

• For more details check out our paper: https://arxiv.org/abs/2309.12713

Questions?
Contact us: tsimos at umd dot edu

https://arxiv.org/abs/2309.12713

