HammerHead

Leader Reputation for Dynamic Scheduling

Giorgos Tsimos, Anastasios Kichidis, Alberto Sonnino, Lefteris Kokoris-Kogias

i

De-fi

E-commerce

Digital Currencies

Underlying Protocols

m Blockchalin

Web3/W3 gaming

Byzantine Atomic Broadcast

e 1 parties, f byzantine (malicious)
 Parties send messages during several rounds
 One designated sender per message sent

e Sender wants to send its input value to all

Byzantine Atomic Broadcast

1. Agreement: All good nodes will get the same messages
2. Integrity: Every good node gets at most one message per round/sender
3. Validity: If a good node sends a message, all good nodes get it

4. Total Order: All good nodes get messages in the same order

Even with one node sending everything, properties are satisfied!

Fairness and Crash Faults

 Optimally, we would like every node to add proportionally equally many blocks
e [Fairness

e BUT

e |f previously good nodes crash and are chosen as leaders, they cause long
latency/low throughput

e Can we achieve fairness and avoid crashed leaders?

DAG consensus

e Consensus protocols with an underlying DAG structure for message
dependencies

e |Line of work: Bullshark, Narwhal-Tusk, Shoal, HammerHead...

e Adopted by systems like Sui

e Allow for blockchains with improved throughput in comparison

\ wuwuw /

Ie 'W'
. /\'

Chained vs DAG Consensus

 For chained consensus, Carousel [FC'22] provided a solution with dynamic
leader election

 Achieves Leader Utilization: bounds the amount of faulty leaders

 And Chain Quality: ~ % committed blocks = %good nodes

e How about DAG-based consensus protocols?

In this talk

e \We design a DAG-based BAB protocol on top of Bullshark, with dynamic
leader election via reputation, that achieves Leader Utilization

 \We show
e How to instantiate leader reputation in DAG consensus
e How to utilize leader reputation for BAB protocols with:
o Leader Utilization

 Improved practical crash-recovery

Reputation

e Each node keeps track of a score for every other node
e The score depends on events upon the DAG

e |t captures the “responsiveness” of nodes during current epoch

o If P, votes in round r for the proposal of the leader of round r — 1, then set
scores(P;) + =1

DAG view of party Pj

> Set scoresi(1) +=1

Roundr—1 Roundr

Reputation

e View of different parties might differ

« Remember DAG property: If vertex u is added to DAG; , then its entire causal
history is also in DAG;

e S0, when committing anchor A, recompute scores based on the new subdag
history up to A (which is committed and fixed).

Previous anchor New

committed

Update scores anchor A

Computed based on
Scores votes

Leader Selection

 \WWe want to disallow recently unresponsive nodes from leaders
e \We utilize the reputation scores
e |f a node has low score for past epoch, it was unresponsive/crashed

e Disallow node from being elected for the next epoch

o Leader set for epoch: > 2f + 1 most responsive nodes of previous epoch

e based on reputation

e« The < fworst are disallowed

e the rest are elected per round with some (stake-based) probability

Schedule updates

e Schedule-change frequency: T
e activeSchedule : contains auxiliary info related to the current schedule, i.e.

e initialRound

e LeaderSet : information regarding the set of active leaders for the epoch,
l.e. the set of good leaders and their scores (for weighted draw).

e scores : DS that maintains a score value for each node. When a schedule

change is to occur, scores are updated according to the subDAG of that
epoch.

How about safety-liveness issues?

| ast Committed Anchor Newly Committable Anchor Current Round

& & &) Schedule S

TryCommitting(v)

Round r

| ast Committed Anchor Newly Committable Anchor Current Round

& & &) Schedule S

TryCommitting(v)

Forward Update

—_—>

Round r

| ast Committed Anchor Newly Committable Anchor Current Round

& & &) Schedule S

TryCommitting(v)

Forward Update Schedule O Schedule S

... . e | CHaTHE (O
S!

Round r

Roundi - 71T
(Schedule Change)

| ast Committed Anchor Newly Committable Anchor Current Round

’ ' a ' Schedule S

TryCommitting(v)
l Anchor ,
Forward Update Schedule ’ according to S’ O Schedule S
.. S Sa. | chage o
S!

Round r

Roundi - T
(Schedule Change)

| ast Committed Anchor Newly Committable Anchor Current Round

& & &) Schedule S

TryCommitting(v)
l Anchor ,
Forward Update Schedule & according to S’ O Schedule S
.. P | (ke
S!

Round r

Roundi - 71T
(Schedule Change)

Implementation

e HammerHead is deployed in Sui mainnet (since v1.9.1)

e Open-source: https://github.com/asonnino/sui/tree/hammerhead
(commit 03c96a3)

 Jests show:
 No throughput loss in ideal conditions (no faults)
* |mproved latency/throughput against crash faults

 No persistent throughput loss when crash faults occur

Without crash faults

—6— HammerHead - 10 nodes ——&— Bullshark - 10 nodes
-¥- HammerHead - 50 nodes -¥- Bullshark - 50 nodes
--@- HammerHead - 100 nodes --M- Bullshark - 100 nodes

o
o
|

Latency (s)
-
(=

N
©
|

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Throughput (tx/s)

With crash faults

—0— HammerHead - 10 nodes (3 faulty) ——&— Bullshark - 10 nodes (3 faulty)
-¥- HammerHead - 50 nodes (16 faulty) —¥- Bullshark - 50 nodes (16 faulty)
-l HammerHead - 100 nodes (33 faulty) --B@- Bullshark - 100 nodes (33 faulty)
15 ;
12 - .

Latency (s)

© N U N .,
(e U1 (e U1 (e
| | | |

2,000

o

3,000

Throughput (tx/s)

In this work

e We designed a DAG-based BAB protocol with dynamic leader election
via reputation, that achieves Leader Utilization

e \We instantiated leader reputation in DAG consensus

e \We utilized leader reputation for BAB protocols with Leader Utilization
and improved practical crash-recovery

 For more details check out our paper: https://arxiv.org/abs/2309.12713

Questions?

Contact us: tsimos at umd dot edu

https://arxiv.org/abs/2309.12713

