HammerHead

Leader Reputation for Dynamic Scheduling

Giorgos Tsimos, Anastasios Kichidis, Alberto Sonnino, Lefteris Kokoris-Kogias

Byzantine Atomic Broadcast

- n parties, f byzantine (malicious)
- Parties send messages during several rounds
- One designated sender per message sent
- Sender wants to send its input value to all

Byzantine Atomic Broadcast

- 1. Agreement: All good nodes will get the same messages
- 2. Integrity: Every good node gets at most one message per round/sender
- 3. Validity: If a good node sends a message, all good nodes get it
- 4. Total Order: All good nodes get messages in the same order

Even with one node sending everything, properties are satisfied!

Fairness and Crash Faults

- Optimally, we would like every node to add proportionally equally many blocks
- Fairness
- BUT
- If previously good nodes crash and are chosen as leaders, they cause long latency/low throughput
- Can we achieve fairness and avoid crashed leaders?

DAG consensus

- Consensus protocols with an underlying DAG structure for message dependencies
 - Line of work: Bullshark, Narwhal-Tusk, Shoal, HammerHead...
 - Adopted by systems like Sui
 - Allow for blockchains with improved throughput in comparison

Chained vs DAG Consensus

- For chained consensus, Carousel [FC'22] provided a solution with dynamic leader election
 - Achieves Leader Utilization: bounds the amount of faulty leaders
 - And Chain Quality: ~ %committed blocks ≡ %good nodes

How about DAG-based consensus protocols?

In this talk

- We design a DAG-based BAB protocol on top of Bullshark, with dynamic leader election via reputation, that achieves Leader Utilization
- We show
 - How to instantiate leader reputation in DAG consensus
 - How to utilize leader reputation for BAB protocols with:
 - Leader Utilization
 - Improved practical crash-recovery

Reputation

- Each node keeps track of a score for every other node
- The score depends on events upon the DAG
 - It captures the "responsiveness" of nodes during current epoch
 - If P_i votes in round r for the proposal of the leader of round r-1, then set $\mathrm{scores}(P_i) + = 1$

DAG view of party P_j

Set
$$scores_j(i) += 1$$

Round r-1 Round r

Reputation

- View of different parties might differ
- Remember **DAG property**: If vertex u is added to DAG_i , then its entire causal history is also in DAG_i
 - So, when committing anchor A, recompute scores based on the new subdag history up to A (which is committed and fixed).

Leader Selection

- We want to disallow recently unresponsive nodes from leaders
- We utilize the reputation scores
- If a node has low score for past epoch, it was unresponsive/crashed
- Disallow node from being elected for the next epoch
- Leader set for epoch: $\geq 2f + 1$ most responsive nodes of previous epoch
 - based on reputation
 - The $\leq f$ worst are disallowed
 - the rest are elected per round with some (stake-based) probability

Schedule updates

- Schedule-change frequency: **T**
- activeSchedule: contains auxiliary info related to the current schedule, i.e.
 - initialRound
 - LeaderSet: information regarding the set of active leaders for the epoch, i.e. the set of good leaders and their scores (for weighted draw).
- **scores**: DS that maintains a score value for each node. When a schedule change is to occur, scores are updated according to the subDAG of that epoch.

How about safety-liveness issues?

Round r

Round r

Current Round Newly Committable Anchor **Last Committed Anchor** Schedule S TryCommitting(v) Schedule S' Schedule Forward Update change to **RESOLVED** Round r Round $i \cdot T$ (Schedule Change)

Newly Committable Anchor **Current Round Last Committed Anchor** Schedule S TryCommitting(v) Anchor Schedule S' Schedule according to S' Forward Update change to **RERUN RESOLVED** Round r Round $i \cdot T$ (Schedule Change)

Newly Committable Anchor **Current Round** Last Committed Anchor Schedule S TryCommitting(v) Anchor Schedule S' Schedule according to S' Forward Update change to **RERUN RESOLVED UNKNOWN** Round r Round $i \cdot T$ (Schedule Change)

Implementation

- HammerHead is deployed in Sui mainnet (since v1.9.1)
 - Open-source: https://github.com/asonnino/sui/tree/hammerhead (commit 03c96a3)
- Tests show:
 - No throughput loss in ideal conditions (no faults)
 - Improved latency/throughput against crash faults
 - No persistent throughput loss when crash faults occur

Without crash faults

With crash faults

In this work

- We designed a DAG-based BAB protocol with dynamic leader election via reputation, that achieves Leader Utilization
- We instantiated leader reputation in DAG consensus
- We utilized leader reputation for BAB protocols with Leader Utilization and improved practical crash-recovery
- For more details check out our paper: https://arxiv.org/abs/2309.12713

Questions?

Contact us: tsimos at umd dot edu