
Walrus
An Efficient Decentralized Storage Network
October | 2024

2

Goals
● Decentralized BFT storage for large blobs

● Efficient writes & reads

● Verifiable availability

● Low storage overhead instead of full replication

● Storage committee can change over time based on stake distribution

● Incentives for continued storage

3

Non-Objectives

● Not a CDN

● Not a Database

● No re-implementation of consensus or execution → rely on smart contracts

● Walrus itself does not provide distributed encryption/decryption to support a full
private storage ecosystem (but it is compatible).

4

Use Cases

● Storage of media for NFT or dapps

● Decentralized Websites → Walrus Sites

● Data sets, models weights, proofs of correct training for AI models

● Storage of archives (blockchain history, websites, papers)

● Support availability for L2s (on ETH and others)

● Support subscription models for media

5

Sui vs Walrus Storage

Sui today:

● Full copy on each Validator

● 105x storage cost

● Relatively small objects

Walrus:

● Erasure coded and distributed

● 4.5x storage cost

● Large blobs MBs to GBs)

6

Architecture

● Clients

○ Store & read blobs

○ Caches (optional): store full blobs and make them available over web2

○ Publishers (optional): store blobs on behalf of users

● Storage Nodes

○ Store one or multiple shards (based on stake)

○ Assume that ⅔ of shards are stored by correct nodes

● Smart contracts

○ Used for coordination

7

Storing a Blob

Walrus
Contract

Walrus
Client

Storage
Node

Storage
Node

Storage
Node

Storage
Node

Blob registeredBlob storedBlob stored
Blob registered

Inconsistency Certificate

Obtain Storage

Registe
r B

lob

Certif
y Blob

Send Encoded Data

Signatures

Recover

Prove Inconsistency

8

Reading a Blob

Walrus
Client

Storage
Node

Storage
Node

Storage
NodeGet encoded data

● Wait for f+1 responses

● Decode Blob

● Re-encode Blob & recompute Blob ID

○ If inconsistent, read “Noneˮ

9

Encoding - Goals

● Low overhead

● Efficient Encoding/Decoding

● Efficient Recovery

○ Nodes recovering their shards should not need to reconstruct everything

● Consistency checks

○ Everyone either reads the originally encoded blob or None

10

HS1 HS2 HS3 HS4

HP1

HP2

HP3

HP4

1

4

31 2

● Encoding uses linear erasure code RaptorQ

● Sliver root hashes (HP1,HP2 etc.) stored on all nodes

○ Allows authentication of symbols Merkle tree)

○ Blob ID is root of Merkle tree over sliver roots

● 2f + 1 symbols of primary sliver f + 1 of secondary sliver stored
per shard

Encoding & Recovery Red Stuff)

● Recovery with (f + 1) + 2f + 1) authenticated symbols + metadata

○ Inconsistency proof consists of recovery symbols

● Based on crash-tolerant Twin-Code framework Rashmi et al.,
2011

11

Epoch Change

Epoch E Epoch E  1

Happy Path Shard Transfer Shard Recovery

Reads served by old
committee
Writes (and reads to
new blobs) by new
Happy path shard
transfer

Shard transfer failure
signalled. Shard Recovery
starts

2f + 1 “migration doneˮ messages
All reads served by new committee

Epoch Change

Staking
Voting (capacity, prices)
For Epoch E  1

Staking
Voting (capacity, prices)
For Epoch E  2

Committee for Epoch
E1 finalized

Staking
Voting (capacity, prices)
For Epoch E  1

Epoch
Change Epoch Duration Epoch Duration

12

Storage Attestation
● Goal: Provide incentives for correct nodes

○ Nodes should receive payments if they provide evidence that they are storing the correct data

○ Avoid expensive proofs/protocols like filecoin

○ Make it hard to “outsourceˮ challenges

● Practical Solution:

○ Storage nodes issue random challenges to each other in every epoch

○ Each challenge consists of multiple sequential subchallenges, which determine a specific symbol that
needs to be provided (and authenticated)

○ Storage nodes measure response time and attest (on-chain) if they received correct responses quickly
enough

○ If enough (threshold tbd, between f+1 and 2f+1) nodes attest correctness of a shard, the shard gets paid

13

Try it yourself:
https://docs.walrus.site

Walrus Testnet Launched Today!

Backup

14

Web3 storage L1s side-by-side

1515

Filecoin Arweave Sia Storj Walrus

Network Independent L1 Independent L1 Independent L1 Ethereum Sui + storage node network
Committee Composition Proof-of-Spacetime Proof-of-Access Proof-of-Work Proof-of-Stake Proof-of-Stake
Proof-of-Storage Proof-of-Replication Proof-of-Access Merkle Proofs Merkle Proofs Sui blob certification
Durability Mechanisms Replication by Choice Replication by Default Erasure Coding by Default Erasure Coding on some node Erasure coding over all nodes
Privacy Mechanism Encrypted by Choice Encrypted by Choice Encrypted by Default Encrypted by Choice Encrypted by Choice
Smart Contract Capability Soon via FVM Yes via SmartWeave Yes via File Contracts No Yes via Sui
Pricing Model Market-Based Model-Based Market-Based Fixed, set by Storj Labs Market-based
Decentrality Fully Fully Fully Partially Fully

Sector Size 32 GB NA 40 MB 64 MB 200 KiB to 1 GB

Latency
Performance is slower than a
floppy disk as saving a 1MB file
takes about 5 to 10 minutes.

Retrieval times may not be as
fast as Filecoin's optimized
solutions. Also, Arweaveʼs block
time is appx 2 minutes.

Fast speed for upload and
download 200 ms per TTFB,
100 Gbps network wide).
However, retrieving files may
take longer compared to
centralized solutions.

Fast retrieval for streaming and
large files 24 Gbps); however,
have low upload speed.

Fast writes and fast reads
distributed across fastest of ⅔
to ⅓ of distributed nodes.
Compatible with caches and
CDNs.

Data Guarantee Every 24 hours, repair
automatically Spot check on random samples Check upon retrieval or

contract expiration
Every 24 hours by satellite, and
repair automatically

Spot checks between nodes,
and tolerates ⅓ - ⅔ node
failures. Every epoch up to ⅓
heal.

Source: Messari Updated as of January 2023

https://www.techzine.eu/blogs/infrastructure/92059/is-filecoin-cheap-decentralized-storage-or-some-kind-of-ponzi-scheme/
https://arcana.network/blog/filecoin-vs-arweave
https://docs.irys.xyz/developer-docs/querying/query-package
https://portal.vc/web3_data_storage
https://fastercapital.com/topics/comparing-different-decentralized-storage-protocols.html
https://portal.vc/web3_data_storage
https://forum.storj.io/t/errors-and-low-upload-speed-via-uplink-cli/25603
https://portal.vc/web3_data_storage

