Elastic Scaling Web3

Elastic Scaling

. Elastic scalability is the ability of a system to dynamically adjust its
resource usage based on workload demands.

Example

Video Streaming Lectures

Normal Days

Example

Video Streaming Lectures

Exam Period

 Video is lower quality

« Students disconnect

Example

Video Streaming Lectures

Morning Before the Exam

« No Service

« System overload

Elastic Scaling

Video Streaming Lectures

Exam Period

« Add Resources as Demand Increases

« Cost per User remains constant

Elastic Scaling

Video Streaming Lectures

Morning Before the Exam

- Smooth User Experience

- Better load balance even in the presence of faults

Key Components For Elastic Scaling

ﬁ ~ Autoscaling: Automatically adjust the number of compute resources
based on workload demands

Load Balancing: Distributes incoming traffic across multiple instances to
ensure optimal resource utilization and performance.

Benefits of Elastic Scaling

45 Cost Efficiency: Pay only for the resources used, minimizing idle capacity

5

Performance: Maintain consistent performance levels during peak and
off-peak periods.

The state of Web3

- Minimum Validator Requirements are high
- Handle load spikes
» High cost

- Downward spiral when the load is low —>
1. Invest in a powerful machine to be ready to handle spikes
2. Load is low, but the cost of buying and running the machine is constant
3. Need to charge more per transaction to break even
4. The marginal utility of transaction drops as fees increase

5. Load drops further

The state of Web3

- When load is higher than the provisioned machine can handle
» Fees and cost are no longer linked
[t 1s an auction —>
 Stable in the short term, but leads exit the ecosystem in the long term
- Huge queuing delays —>

 Also leads to exit the ecosystem

Sharding Blockchains — Design

"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

Sharding Blockchains — Design

"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

o6¢ :\

Sharding Blockchains — Properties

"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

_

«—

[/ :\.

= Low Cost per Node

= Scales-Out

Fragmenting the state-space — Expensive Atomic Commit
Susceptible to adaptive adversaries

Security drop

Sharding Blockchains — Challenges

“Divide and scale: Formalization of distributed ledger sharding protocols” SIROCCO, 2023

et

Table 1: Summarizing sharding protocol properties under our model

Protocol |Persistence Consistency Liveness Scalability Permissionless S.-adaptive

Elastico v
Monoxide v
OmniLedger v
RapidChain ~

X

Chainspace

First Step to the Solution
Layering

First Step to the Solution
Layering

Execution

4

Consensus

*

Narwhal

Dag-based mempool

“Narwhal and tusk: a dag-based mempool and efficient bft consensus.” EuroSys 2022

Narwhal

The workers and the primary

h (Narwhal mempool \
Worker 1
Worker 2
Client |
transactions Primary
|
|
|
Worker n
Yy _ Y.

Narwhal

The workers and the primary

A (Narwhal mempool \

Transactions

> Worker 1

Transactions

> Worker 2

Client

: Primary
transactions

Transactions

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
Transactions Batch
> Worker 2
Client :
: Primary
transactions
|
|
|
Transactions ‘ Batch

> Worker n

Narwhal

The workers and the primary

A (Narwhal mempool \
Transactions Batch
> Worker 1
........................ Digest .
Transactions Batch
> Worker 2
\ 4
Cllent > Prlmary
transactions Digest
| 3
!
|
Digest
Transactions ‘ Batch
> Worker n
y _ Y

Client
transactions

The workers and the primary

Narwhal

-~

Narwhal mempool

~

Transactions Batch
> Worker 1 <
Digest
Transactions Batch
> Worker 2 >
\ 4
. 'mempool protocol’
.............. Prlmary
Digest
| 3
|
|
Digest
Transactions Batch

> Worker n

Narwhal

The primary machine

block header

H

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

Narwhal

The primary machine

block header certificate

| Round 1

Narwhal

The primary machine

block header certificate

| Round 1

' Byzantine 'Reliable’ Broadcast

Narwhal

The primary machine

b A
“(ﬁ”ﬁ,w

Second Step to the Solution

Execution

Mempool

All You Need is DAG—PODC 271

Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus— Eurosys 22’

Bullshark: Dag bft protocols made practical — CCS 22’

Hammerhead: Leader reputation for dynamic scheduling — ICDCS 24’

Bullshark

Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark

Just interpret the DAG

2

Vi

W

\
AN\

Bullshark

Deterministic leader every 2 rounds

2

&‘

\
AN\

m

Bullshark

The leader needs f+1 links from round r

r2 r3

)‘
R

m

Bullshark

The leader needs f+1 links from round r

r2 r3

J

4
X

\

L1

Bullshark

The leader needs f+1 links from round r

AN YA
R

Bullshark

Elect the leader of r4

WX
oy

S

k
1
ullsha

B

upport rs
ough e;
r L2 has in (Lz /
Leader2
%
\th n
-

X \ﬁ@

Bullshark

Leader L2 has links to leader L1

Y
ae

Bullshark

Commit all the sub-DAG of the leader

o
A -
i

Bullshark

Commit all the sub-DAG of the leader

NN XX

w« /

Evaluation

Experimental setup on AWS

|
()]
.
T
F U
3 =
@
L
 ©
-l

Evaluation
Throughput latency graph

U
©
|

h
©
l

w
©
|

Hotstuff, 10 nodes —$— Tusk, 10 nodes —$— Bullshark, 10 nodes
Hotstuff, 20 nodes == Tusk, 20 nodes == Bullshark, 20 nodes
Hotstuff, 50 nodes -®- Tusk, 50 nodes -®- Bullshark, 50 nodes

B B B E—" AN R — |

tx size: 512 B

75k 100k

150k 175k |

Evaluation

Performance under faults

Hotstuff, 10 nodes (1 faulty)
Hotstuff, 10 nodes (3 faulty)
—$— Tusk, 10 nodes (1 faulty)
—$- Tusk, 10 nodes (3 faulty)
—&— Bullshark, 10 nodes (1 faulty)
-~ Bullshark, 10 nodes (3 faulty)

60k 80k 100k 120k |

Summary

Sullshark

- Zero-message overhead, no view-change, no common-coin

- Disseminate data with Narwhal, exploits periods of synchrony

Are we done?

Latency?

Hotstuff, 10 nodes —&— Bullshark, 10 nodes
Hotstuff, 20 nodes —$- Bullshark, 20 nodes
Hotstuff, 50 nodes -9+ Bullshark, 50 nodes

o
©

o
©

0
¥
= 4.0
Q
ol
i 0
'l

W
©

N
©

25K 100k
Throuahout (tx /s)

The Mysticeti DAG

I

r2

The Mysticeti DAG

Block Creation

« Round number
« Author
- Payload (transactions)

» Signature

The Mysticeti DAG

Rule 1: Link to 2f+1 parents

- Total nodes: 3f+1=4
¢« Quorum: 2f+1=3

The Mysticeti DAG

Rule 2: Every node waits and links to leaders

I r2

The Mysticeti DAG

Rule 3: All node run in parallel

\/“\/

-

G Structu
DA
W
/Aw
\

\.ﬁ*
\

\
/\ﬁ/\ /

\l
%

Interpreting DAG Patterns

wave 1

-~

propose

vote

certify

Certificate

\
&
Q

Direct Decision Rule

On each leader starting from highest round:
if 2f+1 blames

« Commit if 2f+1 certificates

« Undecided otherwise

Direct Decision Rule

On each leader starting from highest round:
. if 2f+1 blames

« Commit if 2f+1 certificates

« Undecided otherwise

d r2 r3 r4 rs ré

L4a

Direct Decision Rule

On each leader starting from highest round:
if 2f+1 blames

« Commit if 2f+1 certificates

« Undecided otherwise

d r2 r3 r4 rs ré

Why?

Crash Faults

In a year of running Sui:

- How many Byzantine faults? ()

Why?

Crash Faults

In a year of running Sui:

- How many Byzantine faults? ()

- How many Crash faults?

Why?

Crash Faults

In a year of running Sui:

- How many Byzantine faults? ()

» How many Crash faults? @

Resources

https://arxiv.org/pdf/2310.14821

https://arxiv.org/pdf/2310.14821
https://www.youtube.com/watch?v=JhhCxyZylx8

Evaluation

—&— Hotstuff - 10 nodes Narwhal-HS - 10 nodes —#— Bullshark - 10 nodes = —§— Mysticeti-C - 10 nodes
--@- Hotstuff - 50 nodes Narwhal-HS - 50 nodes --8- Bullshark - 50 nodes --§- Mysticeti-C - 50 nodes

>
©

W
©

—
2
o
c 2.0
)
+~
(]
-

=
(=)

S
©

Throughput (tx/s)

Last Step to the Solution

Sharding

"8

oo
s

Over DAGs—Design

Sharding Over DAGs — Properties

"Executing and proving over dirty ledgers." FC, 2023.

=+=51% security threshold per Shard
= Scales-Out
== Low Cost per Execution Node
~Fragmenting the state-space — Expensive Atomic Commit

-~ Susceptible to adaptive adversaries

Pilotfish

Distributed Transaction Execution for Lazy Blockchains

Sequence Worker
« Owns a shard of transactions

e Stores txs it owns

~N

o Dispatches txs to EWs for execution

Transactions

\ (SWs)

'I

S—i—g®

in committed sequence

From consensus or checkpoints

Sequencing Workers

Transactions

>

Execution Workers

(EWs) /

|

il —g®

Execution Worker

« Owns a shard of objects

o Stores objects it owns

o Executes txs on objects it owns
o Coordinates with other EWs

“Pilotfish: Distributed Transaction Execution for Lazy Blockchains.” arXiv preprint arXiv:2401.16292.

Sequence Worker (SW)

©

Retrieve tx data Determine which Send tx data to
from storage EWs are concerned relevant EWs
by this tx

Committed sequence l

For every input tx:

Execution Workers (EWs)

SW

\X\
— EW 1 Execute g OStore jpumme
executor of tx \ //v \ Created & modified objects
EW 2

>
Objects required
for execution

oo

Read

EW 3

Why is this Safe in Concurrency

- The ordering of dependencies is predefined from the consensus output

- Every EW knows the version of the objects they are supposed to read/
write and back pressure the SW when it is not available yet

Pilotfish —> Elastic Scaling for Web3

== Cost scales with load, but so does profit
= Scales-Out
Flat state-space

= Consistent Threat Model

Evaluation

-@- Pilotfish —— SUIl Baseline

=)
o
A

H
o
A

n
£
>
U
c
0
L
©
-

Throughput (tx/s)
N
=
A

40k 60k 80k
Throughput (tx/s)

=
A

4

Execution Workers
Figure 9: Pilotfish latency vs. throughput with simple transfers.

Figure 10: Pilotfish scalability with simple transfers.

Evaluation

-@®- Fib-2500 —— Baseline Fib-2500
Fib-5000 Baseline Fib-5000
-#- Fib-10000 -— Baseline Fib-10000

p—
)
S~
X
st
)
-
Q.
L
(*)
-
(e
=
e
=

Execution Workers

Figure 12: Pilotfish scalability with computationally heavy transactions. Fib-X
means that each transaction computes the X-th Fibonacci number. The hori-
zontal lines show the single-machine throughput of the baseline on the same
workloads.

 Pilotfish over Bullshark provides the first
end-to-end Elastic Distributed Ledger

 Pilotfish does not employ batching —>
Latencies of 20-50ms post-consensus

. Pilotfish is co-designed with the
blockchain —> Light worker recovery

Side-Stepping Consensus

Consensus is not required

Coins, balances, and NFTs creation and Game logic allowing users
transfers transfers to combine assets

Auditable 3rd party
services not trusted for
safety

Inventory management for
games / metaverse

New Architecture
The Sui System

Consensus only when
you heed to

New Architecture

Architecture

Owned Objects Shared Objects

- Objects that can be mutated by a single entity - Objects that can be mutated my multiple entities
- e.g., My bank account » e.g., A global counter

e Do not heed consensus e Need consensus

The Sui System

Architecture

Contains
shared-objects?

Transaction Consistent Consensus Checkpoints, g
Broadcast Merkle Trees

Agreed sequence
for audit/sync

Parallel
Execution

Certificate without Certificate with
consensus consensus

N

N2
N3
N4

User

The Sui System

Consensus-less Path

/o

/a

AN

AN\

V/ZANN

VNN

S\

7\

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

CertT1:

User gather >2/3
signatures into a
certificate and
disseminate it

EffectT1:

User gather >2/3
effect signatures for
finality

The Sui System

Consensus-less Path

" /A\ /A\

" VAN /NN

Low Latency
Trivial to Scale Out
Reconfiguration

Equivocation results in loss of liveness

Side-Stepping Consensus

Safe reconfiguration

Side-Stepping Consensus

Equivocation Tolerence

