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• Elastic scalability is the ability of a system to dynamically adjust its 
resource usage based on workload demands.

Elastic Scaling



Example
Video Streaming Lectures

Normal Days



Example
Video Streaming Lectures

• Video is lower quality 

• Students disconnect

Exam Period



Example
Video Streaming Lectures

• No Service 

• System overload

Morning Before the Exam



Elastic Scaling
Video Streaming Lectures

Exam Period

• Add Resources as Demand Increases 

• Cost per User remains constant



Elastic Scaling
Video Streaming Lectures

• Smooth User Experience 

• Better load balance even in the presence of faults

Morning Before the Exam



Key Components For Elastic Scaling 

• Autoscaling: Automatically adjust the number of compute resources 
based on workload demands 

• Load Balancing: Distributes incoming traffic across multiple instances to 
ensure optimal resource utilization and performance.



Benefits of Elastic Scaling 

• Cost Efficiency: Pay only for the resources used, minimizing idle capacity 

• Performance:  Maintain consistent performance levels during peak and 
off-peak periods.



 The state of Web3
• Minimum Validator Requirements are high 

• Handle load spikes 

• High cost 

• Downward spiral when the load is low —> Increase fees or bankrupt 
1. Invest in a powerful machine to be ready to handle spikes 

2. Load is low, but the cost of buying and running the machine is constant 

3. Need to charge more per transaction to break even 

4. The marginal utility of transaction drops as fees increase 

5. Load drops further



 The state of Web3
• When load is higher than the provisioned machine can handle 

• Fees and cost are no longer linked 

• It is an auction —> Pay the premium or leave 

• Stable in the short term, but leads exit the ecosystem in the long term 

• Huge queuing delays —> Horrible UX 

• Also leads to exit the ecosystem



Sharding Blockchains — Design
"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.
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Sharding Blockchains — Properties

• Low Cost per Node 

• Scales-Out 

• Fragmenting the state-space — Expensive Atomic Commit 

• Susceptible to adaptive adversaries 

• Security drop

"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.



Sharding Blockchains — Challenges
“Divide and scale: Formalization of distributed ledger sharding protocols” SIROCCO, 2023



First Step to the Solution
Layering

Mempool

Consensus

Execution
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Narwhal
Dag-based mempool

“Narwhal and tusk: a dag-based mempool and efficient bft consensus.” EuroSys 2022
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The workers and the primary
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Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client 
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'
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Narwhal
The primary machine

r1 r2 r3 r4 r5



Second Step to the Solution

Mempool

Consensus

Execution



Bullshark: Dag bft protocols made practical — CCS 22’

All You Need is DAG—PODC 21’

Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus— Eurosys 22’

Hammerhead: Leader reputation for dynamic scheduling — ICDCS 24’



Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback



Bullshark
Just interpret the DAG

r1 r2



Bullshark
Deterministic leader every 2 rounds

r1 r2

L1



Bullshark
The leader needs f+1 links from round r
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Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

One node supports L1!



Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !  
(Nothing is committed at this stage)

L1



Bullshark
Elect the leader of r4

r1 r2 r3
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Bullshark
Leader L2 has enough support
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Bullshark
Leader L2 has links to leader L1

r1 r2 r3

L1

r4 r5

L2

First commit L1 Then commit L2



Bullshark
Commit all the sub-DAG of the leader
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Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2



Evaluation
Experimental setup on AWS

m5d.8xlarge



Evaluation
Throughput latency graphConference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

tx size: 512 B
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HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
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The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When



Summary

• Zero-message overhead, no view-change, no common-coin 

• Disseminate data with Narwhal, exploits periods of synchrony

Bullshark



Are we done?
Latency?



The Mysticeti DAG
Uncertified DAG



The Mysticeti DAG
Block Creation

• Round number 

• Author 

• Payload (transactions) 

• Signature

r1 r2



The Mysticeti DAG
Rule 1: Link to 2f+1 parents

r1 r2

• Total nodes: 3f+1 = 4 

• Quorum: 2f+1 = 3



L1

The Mysticeti DAG
Rule 2: Every node waits and links to leaders

r1 r2



The Mysticeti DAG
Rule 3: All node run in parallel

r1 r2

L1
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r1 r2 r3

wave 1

propose vote certify

L1 Certificate

Blame

ReminderInterpreting DAG Patterns



Direct Decision Rule

• Skip if 2f+1 blames 

• Commit if 2f+1 certificates 

• Undecided otherwise

On each leader starting from highest round:
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Direct Decision Rule

• Skip if 2f+1 blames 

• Commit if 2f+1 certificates 

• Undecided otherwise

On each leader starting from highest round:
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Why?
Crash Faults

0• How many Byzantine faults?

In a year of running Sui:
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Why?
Crash Faults

0• How many Byzantine faults?

• How many Crash faults? 😭

In a year of running Sui:



Resources

• Paper: https://arxiv.org/pdf/2310.14821  

• Presentation: https://www.youtube.com/watch?v=JhhCxyZylx8 

https://arxiv.org/pdf/2310.14821
https://www.youtube.com/watch?v=JhhCxyZylx8
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Last Step to the Solution

Mempool

Consensus

Execution



Sharding Over DAGs—Design
"Executing and proving over dirty ledgers." FC, 2023.



Sharding Over DAGs — Properties

• 51% security threshold per Shard  

• Scales-Out 

• Low Cost per Execution Node  

• Fragmenting the state-space — Expensive Atomic Commit 

• Susceptible to adaptive adversaries

"Executing and proving over dirty ledgers." FC, 2023.



Pilotfish
Distributed Transaction Execution for Lazy Blockchains 

Sequencing Workers 
(SWs)

Execution Workers 
(EWs)

Transactions

Sequence Worker 
• Owns a shard of transactions 
• Stores txs it owns 
• Dispatches txs to EWs for execution

Execution Worker 
• Owns a shard of objects 
• Stores objects it owns 
• Executes txs on objects it owns 
• Coordinates with other EWs

Transactions in committed sequence

From consensus or checkpoints

“Pilotfish: Distributed Transaction Execution for Lazy Blockchains.” arXiv preprint arXiv:2401.16292.



Sequence Worker (SW)

Retrieve tx data 
from storage

Determine which 
EWs are concerned 

by this tx

Send tx data to 
relevant EWs

Committed  sequence

For every input tx:

Obj 1

Obj 2

Obj 3

EW i

EW j

Tx 
data {



Execution Workers (EWs)

Execute

Read

Created & modified objects

Read

EW 1

EW 2

EW 3

Store

Store

Objects required  
for execution

tx
SW

executor of tx



Why is this Safe in Concurrency

• The ordering of dependencies is predefined from the consensus output 

• Every EW knows the version of the objects they are supposed to read/
write and back pressure the SW when it is not available yet



Pilotfish —> Elastic Scaling for Web3

• Cost scales with load, but so does profit 

• Scales-Out 

• Flat state-space  

• Consistent Threat Model



Evaluation



Evaluation



• Pilotfish over Bullshark provides the first 
end-to-end Elastic Distributed Ledger 

• Pilotfish does not employ batching —> 
Latencies of 20-50ms post-consensus 

• Pilotfish is co-designed with the 
blockchain —> Light worker recovery



Side-Stepping Consensus
Consensus is not required

Coins, balances, and 
transfers

Inventory management for 
games / metaverse

NFTs creation and 
transfers

Auditable 3rd party 
services not trusted for 

safety
…

Game logic allowing users 
to combine assets



Consensus only when 
you need to 

New Architecture
The Sui System



New Architecture
Architecture

• Objects that can be mutated by a single entity 

• e.g., My bank account 

• Do not need consensus 

Shared ObjectsOwned Objects

• Objects that can be mutated my multiple entities 

• e.g., A global counter 

• Need consensus



Execute Execute

The Sui System
Architecture

Consistent 
Broadcast Consensus Checkpoints, 

Merkle Trees

Execute Execute

Contains 
shared-objects?

Parallel 
Execution

Certificate without 
consensus

Certificate with 
consensus

Transaction

Agreed sequence 
for audit/sync



The Sui System
Consensus-less Path

Send T1: 

Disseminate the 
transaction

Echo T1: 

Nodes check and 
sign T1

Cert T1: 

User gather >2/3 
signatures into a 
certificate and 
disseminate it

Effect T1: 

User gather >2/3 
effect signatures for 

finality

N1

N2
N3
N4

User



The Sui System
Consensus-less Path

N1

N2
N3
N4

User

• Low Latency 

• Trivial to Scale Out 

• Reconfiguration 

• Equivocation results in loss of liveness



Side-Stepping Consensus
Safe reconfiguration



Side-Stepping Consensus
Equivocation Tolerence


