
Elastic Scaling Web3

Lefteris Kokoris Kogias — Mysten Labs

• Elastic scalability is the ability of a system to dynamically adjust its
resource usage based on workload demands.

Elastic Scaling

Example
Video Streaming Lectures

Normal Days

Example
Video Streaming Lectures

• Video is lower quality

• Students disconnect

Exam Period

Example
Video Streaming Lectures

• No Service

• System overload

Morning Before the Exam

Elastic Scaling
Video Streaming Lectures

Exam Period

• Add Resources as Demand Increases

• Cost per User remains constant

Elastic Scaling
Video Streaming Lectures

• Smooth User Experience

• Better load balance even in the presence of faults

Morning Before the Exam

Key Components For Elastic Scaling

• Autoscaling: Automatically adjust the number of compute resources
based on workload demands

• Load Balancing: Distributes incoming traffic across multiple instances to
ensure optimal resource utilization and performance.

Benefits of Elastic Scaling

• Cost Efficiency: Pay only for the resources used, minimizing idle capacity

• Performance: Maintain consistent performance levels during peak and
off-peak periods.

 The state of Web3
• Minimum Validator Requirements are high

• Handle load spikes

• High cost

• Downward spiral when the load is low —> Increase fees or bankrupt
1. Invest in a powerful machine to be ready to handle spikes

2. Load is low, but the cost of buying and running the machine is constant

3. Need to charge more per transaction to break even

4. The marginal utility of transaction drops as fees increase

5. Load drops further

 The state of Web3
• When load is higher than the provisioned machine can handle

• Fees and cost are no longer linked

• It is an auction —> Pay the premium or leave

• Stable in the short term, but leads exit the ecosystem in the long term

• Huge queuing delays —> Horrible UX

• Also leads to exit the ecosystem

Sharding Blockchains — Design
"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

Sharding Blockchains — Design
"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

Sharding Blockchains — Properties

• Low Cost per Node

• Scales-Out

• Fragmenting the state-space — Expensive Atomic Commit

• Susceptible to adaptive adversaries

• Security drop

"Omniledger: A secure, scale-out, decentralized ledger via sharding." IEEE S&P, 2018.

Sharding Blockchains — Challenges
“Divide and scale: Formalization of distributed ledger sharding protocols” SIROCCO, 2023

First Step to the Solution
Layering

Mempool

Consensus

Execution

First Step to the Solution
Layering

Mempool

Consensus

Execution

Narwhal
Dag-based mempool

“Narwhal and tusk: a dag-based mempool and efficient bft consensus.” EuroSys 2022

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest

Narwhal
The workers and the primary

Narwhal mempool

Worker 2

Worker 1

Primary

Worker n

Client
transactions

Transactions

Transactions

Transactions

Batch

Batch

Batch

Digest

Digest

Digest
'mempool protocol'

Narwhal
The primary machine

G1

G2

G3

block header

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

G1

G2

G3

H

H

H

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Narwhal
The primary machine

block header certificate

V

V

V

C

C

G1

G2

G3

H

H

H

C

C

Round 1

Byzantine 'Reliable' Broadcast

Narwhal
The primary machine

r1 r2 r3 r4 r5

Second Step to the Solution

Mempool

Consensus

Execution

Bullshark: Dag bft protocols made practical — CCS 22’

All You Need is DAG—PODC 21’

Narwhal and Tusk: A DAG-based Mempool and Efficient BFT Consensus— Eurosys 22’

Hammerhead: Leader reputation for dynamic scheduling — ICDCS 24’

Bullshark
Zero-message partially-synchronous consensus

* without asynchronous fallback

Bullshark
Just interpret the DAG

r1 r2

Bullshark
Deterministic leader every 2 rounds

r1 r2

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

L1

One node supports L1!

Bullshark
The leader needs f+1 links from round r

r1 r2 r3

Not enough support !
(Nothing is committed at this stage)

L1

Bullshark
Elect the leader of r4

r1 r2 r3

L1

L2

r4

Bullshark
Leader L2 has enough support

r1 r2 r3

L1

r4 r5

L2

Bullshark
Leader L2 has links to leader L1

r1 r2 r3

L1

r4 r5

L2

First commit L1 Then commit L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Bullshark
Commit all the sub-DAG of the leader

r1 r2 r3

L1

r4 r5

L2

Evaluation
Experimental setup on AWS

m5d.8xlarge

Evaluation
Throughput latency graphConference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

tx size: 512 B

Evaluation
Performance under faults

Conference’22, November 2022, Los Angeles, CA, USAAlexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Le�eris Kokoris-Kogias

Figure 2: Comparative throughput-latency performance of HotStu�, Tusk, and BullShark. WAN measurements with 10, 20, 50 parties. No faulty parties,
500KB maximum block size and 512B transaction size.

Figure 3: Maximum achievable throughput of HotStu�, Tusk, and Bull-
Shark, keeping the latency under 2.5s and 5s. WAN measurements with
10, 20, 50 parties. No faulty parties, 500KB maximum block size and 512B
transaction size.

Tusk and BullShark maintain a good level of throughput: the un-
derlying DAG continues collecting and disseminating transactions
despite the crash-faults, and is not overly a�ected by the faulty
parties. The reduction in throughput is in great part due to losing
the capacity of faulty parties. When operating with 3 faults, both
Tusk and BullShark provide a 10x throughput increase and about
7x latency reduction with respect to HotStu�.

9.3 Performance under asynchrony
HotStu� has no liveness guarantees when the eventual synchrony
assumption does not hold (before GST), either due to (aggressive)
DDoS attacks targeted against the leaders [37] or adversarial de-
lays on the leaders’ messages as experimentally proven in prior
work [19, 22] . That is, the throughput of the system falls to 0. The
same can happen to the partially synchronous version of BullShark.

Figure 4: Comparative throughput-latency under crash-faults of HotStu�,
Tusk, and BullShark. WAN measurements with 10 parties. Zero, one, and
three crash-faults, 500KB maximum block size and 512B transaction size.

The reason is that whenever a party becomes the leader for some
round, its proposal can be delayed such that all other parties timeout
for that round. In order to avoid this attack, Tusk and DAG-Rider
elects leaders unpredictably after the DAG is constructed which
makes such attacks impossible. The purpose of the fallback mode of
BullShark is to maintain the same liveness properties as Tusk and
DAG-Rider under asynchrony without compromising on perfor-
mance during periods of synchrony. If the voting type of all parties
is fallback, then BullShark acts as Tusk. In the fallback mode, Bull-
Shark thus renounces to its latency advantage with respect to Tusk
in order to remain live under asynchrony. As any asynchronous pro-
tocol, the performance of both Tusk and BullShark during periods
of asynchrony can be arbitrarily bad as they depend on the network
conditions (which guarantee delivery after unbounded time). When

Summary

• Zero-message overhead, no view-change, no common-coin

• Disseminate data with Narwhal, exploits periods of synchrony

Bullshark

Are we done?
Latency?

The Mysticeti DAG
Uncertified DAG

The Mysticeti DAG
Block Creation

• Round number

• Author

• Payload (transactions)

• Signature

r1 r2

The Mysticeti DAG
Rule 1: Link to 2f+1 parents

r1 r2

• Total nodes: 3f+1 = 4

• Quorum: 2f+1 = 3

L1

The Mysticeti DAG
Rule 2: Every node waits and links to leaders

r1 r2

The Mysticeti DAG
Rule 3: All node run in parallel

r1 r2

L1

L6c

L6d

L1a

L1b

L1c

L1d

L2d

L2a

L2b

L2c

L3c

L3d

L3b

L4d

L4a

L4c

L5d

L5b

L5a

L6bL5c

L4b

r1 r2 r3 r4 r5 r6 r7

L7c

L7d

L7a

L7bL6a

DAG Structure

r1 r2 r3

wave 1

propose vote certify

L1 Certificate

Blame

ReminderInterpreting DAG Patterns

Direct Decision Rule

• Skip if 2f+1 blames

• Commit if 2f+1 certificates

• Undecided otherwise

On each leader starting from highest round:

Direct Decision Rule

• Skip if 2f+1 blames

• Commit if 2f+1 certificates

• Undecided otherwise

On each leader starting from highest round:

r4

L1a

L1b

L2a

L2b

L3b

L4a L5b

L4b

L6a

r5 r6r3r2r1

Direct Decision Rule

• Skip if 2f+1 blames

• Commit if 2f+1 certificates

• Undecided otherwise

On each leader starting from highest round:

r4

L1a

L1b

L2a

L2b

L3b

L4a

L5a

L4b

r5 r6r3r2r1

Why?
Crash Faults

0• How many Byzantine faults?

In a year of running Sui:

Why?
Crash Faults

0• How many Byzantine faults?

• How many Crash faults?

In a year of running Sui:

Why?
Crash Faults

0• How many Byzantine faults?

• How many Crash faults? 😭

In a year of running Sui:

Resources

• Paper: https://arxiv.org/pdf/2310.14821

• Presentation: https://www.youtube.com/watch?v=JhhCxyZylx8

https://arxiv.org/pdf/2310.14821
https://www.youtube.com/watch?v=JhhCxyZylx8

Evaluation

Last Step to the Solution

Mempool

Consensus

Execution

Sharding Over DAGs—Design
"Executing and proving over dirty ledgers." FC, 2023.

Sharding Over DAGs — Properties

• 51% security threshold per Shard

• Scales-Out

• Low Cost per Execution Node

• Fragmenting the state-space — Expensive Atomic Commit

• Susceptible to adaptive adversaries

"Executing and proving over dirty ledgers." FC, 2023.

Pilotfish
Distributed Transaction Execution for Lazy Blockchains

Sequencing Workers
(SWs)

Execution Workers
(EWs)

Transactions

Sequence Worker
• Owns a shard of transactions
• Stores txs it owns
• Dispatches txs to EWs for execution

Execution Worker
• Owns a shard of objects
• Stores objects it owns
• Executes txs on objects it owns
• Coordinates with other EWs

Transactions in committed sequence

From consensus or checkpoints

“Pilotfish: Distributed Transaction Execution for Lazy Blockchains.” arXiv preprint arXiv:2401.16292.

Sequence Worker (SW)

Retrieve tx data
from storage

Determine which
EWs are concerned

by this tx

Send tx data to
relevant EWs

Committed sequence

For every input tx:

Obj 1

Obj 2

Obj 3

EW i

EW j

Tx
data {

Execution Workers (EWs)

Execute

Read

Created & modified objects

Read

EW 1

EW 2

EW 3

Store

Store

Objects required
for execution

tx
SW

executor of tx

Why is this Safe in Concurrency

• The ordering of dependencies is predefined from the consensus output

• Every EW knows the version of the objects they are supposed to read/
write and back pressure the SW when it is not available yet

Pilotfish —> Elastic Scaling for Web3

• Cost scales with load, but so does profit

• Scales-Out

• Flat state-space

• Consistent Threat Model

Evaluation

Evaluation

• Pilotfish over Bullshark provides the first
end-to-end Elastic Distributed Ledger

• Pilotfish does not employ batching —>
Latencies of 20-50ms post-consensus

• Pilotfish is co-designed with the
blockchain —> Light worker recovery

Side-Stepping Consensus
Consensus is not required

Coins, balances, and
transfers

Inventory management for
games / metaverse

NFTs creation and
transfers

Auditable 3rd party
services not trusted for

safety
…

Game logic allowing users
to combine assets

Consensus only when
you need to

New Architecture
The Sui System

New Architecture
Architecture

• Objects that can be mutated by a single entity

• e.g., My bank account

• Do not need consensus

Shared ObjectsOwned Objects

• Objects that can be mutated my multiple entities

• e.g., A global counter

• Need consensus

Execute Execute

The Sui System
Architecture

Consistent
Broadcast Consensus Checkpoints,

Merkle Trees

Execute Execute

Contains
shared-objects?

Parallel
Execution

Certificate without
consensus

Certificate with
consensus

Transaction

Agreed sequence
for audit/sync

The Sui System
Consensus-less Path

Send T1:

Disseminate the
transaction

Echo T1:

Nodes check and
sign T1

Cert T1:

User gather >2/3
signatures into a
certificate and
disseminate it

Effect T1:

User gather >2/3
effect signatures for

finality

N1

N2
N3
N4

User

The Sui System
Consensus-less Path

N1

N2
N3
N4

User

• Low Latency

• Trivial to Scale Out

• Reconfiguration

• Equivocation results in loss of liveness

Side-Stepping Consensus
Safe reconfiguration

Side-Stepping Consensus
Equivocation Tolerence

