
Chainspace:
A Sharded Smart Contract Platform

Authors
Mustafa Al-Bassam*

Alberto Sonnino*

Shehar Bano*

Dave Hrycyszyn†

George Danezis*

Published in NDSS ‘18

* University College London
† constructiveproof.com

Binary District Meetup, London

▪Blockchains are cool — but scale badly

▪Hard to operate on secret inputs

Motivation

Transactions are
recorded on chain

Smart contracts are
public

visa
2000 TPS

Introduction

▪What is chainspace?

Scalable smart contract platform

Supporting PETs by Design

contribution I

contribution II

Contents

.1.
System Overview

.2.
Privacy by Design

.3.
Scalability

.4.
Security Properties.5.

Performances

▪How does Chainspace work?
▪Everything in Chainspace is an object
▪For example: a bank account, a hotel room, a train seat
▪Objects are either active, inactive, or nonexistant
▪Only active objects can be used in transactions

System Overview

Alice’s wallet
Balance: 10

Alice’s wallet
Balance: 5

Object 1 Object 2

Object 1: active
Object 2: nonexistant

Object 1: inactive
Object 2: active

Chainspace transaction

Balance - 5

▪How does Chainspace work?
▪Everything in Chainspace is an object
▪For example: a bank account, a hotel room, a train seat
▪Objects are either active, inactive, or nonexistant
▪Only active objects can be used in transactions

System Overview

Train seat #33
Free

Train seat #33
Taken by Alice

Object 1 Object 2

Object 1: active
Object 2: nonexistant

Object 1: inactive
Object 2: active

Chainspace transaction

Reserve train seat

▪How does Chainspace work?
▪Nodes are organised into shards
▪Shards manage objects
▪Objects can be used only once

System Overview

Privacy by Design

.1.
System Overview

.2.
Privacy by Design

.3.
Scalability

.4.
Security Properties.5.

Performance

Privacy by Design

▪What are Chainspace Smart Contract?

execution

checker

user side

node side

execution

checker

Privacy by Design

▪What are Chainspace Smart Contract?

input
objects

output
objects

user
execution

checker

input & output
objects

node

or

Privacy by Design

▪How are smart contract executed?

inputs

execution

checker

contract

execution checker

outputs &
invalidate inputs

transaction

user node

 inputs
 proof of execution
 parameters
 outputs
 …

❶

❷ ❹

❸

❺

Privacy by Design

▪Private data never leaves the client!

user

node

execution
— zk-proof —

checker
— verify zk-proofs —

private data
— secret key — ❶

❷

❸

▪How to map objects to shards?

Privacy by Design

The smart
contracts decide!

shard 1 shard 2

Scalability

.1.
System Overview

.2.
Privacy by Design

.3.
Scalability

.4.
Security Properties.5.

Performance

Scalability

▪We split the blockchain to multiple shards.

Scalability

▪What is the train-and-hotel problem?

Travel agent

Book hotel
room #12
in shard 1

Book train
seat #33
in shard 2

Scalability

▪What is the train-and-hotel problem?

Travel agent

Book hotel
room #12
in shard 1

Book train
seat #33
in shard 2

✔

Book hotel
room #12
in shard 1

✔✘

Scalability

▪How nodes reach consensus?

Byzantine
Agreement

Atomic
Commit

The S-BAC Protocol

Shard 1
(manage o1)

Shard 2
(manage o2)

Shard 3
(manage o3)

user
lock unlock

Scalability

▪The Wisdom behind S-BAC

Shard 1
(manage o1)

Shard 2
(manage o2)

Shard 3
(manage o3)

user

Only shards managing o1 and o2
are working

Shard 1 and shard 2 can work in
parallel

Security Properties

.1.
System Overview

.2.
Privacy by Design

.3.
Scalability

.4.
Security Properties.5.

Performance

Security Properties

▪What does Chainspace guarantee?
▪Honest Shard (HS): among 3f+1 nodes, at most f are malicious.
▪Malicious Shard (DS): over f dishonest nodes.
▪Chainspace properties:

Transparency (HS & DS)

Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

Integrity (HS)

Encapsulation (HS & DS)

Non-Repudiation (HS & DS)

A smart contract cannot interfere with
objects created by another contract
(except if defined by that contract).

Misbehaviour is detectable: there are
evidences of misbehaviour pointing to
the faulty parties or shards.

Only valid & non-conflicting transactions
will be executed.

Performance

.1.
System Overview

.2.
Privacy by Design

.3.
Scalability

.4.
Security Properties.5.

Performance

Performance

https://github.com/chainspace

S-BAC protocol
implemented in Java

Python contract
environment

Everything is released as open source software

Deployed and tested on
Amazon AWS

▪What did we implemented?

Based on
BFT-SMaRt

1. Helps developers
2. Simulation of the checker
3. No need for full deployment

Performance

▪How the number of shards influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Number of Shards

Performance

▪How does the size of the shard influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Nodes per Shard

Performance

▪How the number of inputs influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Number of Inputs

Performance

▪How does the latency vary under different system loads?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

Probability VS Latency

Conclusions

▪What else is in the paper?

Cross shard transactions

Real world applications
(smart metering, …)

Smart contracts
benchmarking

And much more…

Conclusions

▪What did we talk about?

Scalable smart contract platform

Supporting PETs by Design

contribution I

contribution II

Conclusions

▪Main take-aways

sharding scalability

execution
/ checker

privacy
by design

Conclusions

▪Future Works

1. How to recover from malicious shards?

2. How can a smart contract creator avoid
dishonest shards?

Conclusions

▪Future Works

3. How to bootstrap the system?

4. How to incentivise nodes?

Mustafa Al-Bassam
m.albassam@cs.ucl.ac.uk

Questions?

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

