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▪Blockchains are cool — but scale badly

▪Hard to operate on secret inputs

Motivation

Transactions are 
recorded on chain

Smart contracts are 
public

visa
2000 TPS



Introduction

▪What is chainspace?

Scalable smart contract platform

Supporting PETs by Design

contribution I

contribution II
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▪How does Chainspace work?
▪Everything in Chainspace is an object
▪For example: a bank account, a hotel room, a train seat
▪Objects are either active, inactive, or nonexistant
▪Only active objects can be used in transactions

System Overview

Alice’s wallet
Balance: 10

Alice’s wallet
Balance: 5

Object 1 Object 2

Object 1: active
Object 2: nonexistant

Object 1: inactive
Object 2: active

Chainspace transaction

Balance - 5



▪How does Chainspace work?
▪Everything in Chainspace is an object
▪For example: a bank account, a hotel room, a train seat
▪Objects are either active, inactive, or nonexistant
▪Only active objects can be used in transactions

System Overview

Train seat #33
Free

Train seat #33
Taken by Alice

Object 1 Object 2

Object 1: active
Object 2: nonexistant

Object 1: inactive
Object 2: active

Chainspace transaction

Reserve train seat



▪How does Chainspace work?
▪Nodes are organised into shards
▪Shards manage objects
▪Objects can be used only once

System Overview
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Privacy by Design

▪What are Chainspace Smart Contract?

execution

checker

user side

node side



execution

checker

Privacy by Design

▪What are Chainspace Smart Contract?

input 
objects

output 
objects

user
execution

checker

input & output 
objects

node

or



Privacy by Design

▪How are smart contract executed?

inputs

execution

checker

contract

execution checker

outputs & 
invalidate  inputs

transaction

user node

 inputs
 proof of execution
 parameters
 outputs
 …

❶

❷ ❹

❸

❺



Privacy by Design

▪Private data never leaves the client!

user

node

execution
— zk-proof —

checker 
— verify zk-proofs —

private data
— secret key — ❶

❷

❸



▪How to map objects to shards?

Privacy by Design

The smart 
contracts decide!

shard 1 shard 2
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Scalability

▪We split the blockchain to multiple shards.



Scalability

▪What is the train-and-hotel problem?

Travel agent

Book hotel
room #12
in shard 1

Book train
seat #33
in shard 2



Scalability

▪What is the train-and-hotel problem?

Travel agent

Book hotel
room #12
in shard 1

Book train
seat #33
in shard 2

✔

Book hotel
room #12
in shard 1

✔✘



Scalability

▪How nodes reach consensus?

Byzantine 
Agreement

Atomic 
Commit

The S-BAC Protocol

Shard 1
(manage o1)

Shard 2
(manage o2)

Shard 3
(manage o3)

user
lock unlock



Scalability

▪The Wisdom behind S-BAC

Shard 1
(manage o1)

Shard 2
(manage o2)

Shard 3
(manage o3)

user

Only shards managing o1 and o2 
are working 

Shard 1 and shard 2 can work in 
parallel



Security Properties
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Security Properties

▪What does Chainspace guarantee?
▪Honest Shard (HS): among 3f+1 nodes, at most f are malicious.
▪Malicious Shard (DS): over f dishonest nodes.
▪Chainspace properties:

Transparency (HS & DS)

Anyone can authenticate the history of 
transactions and objects that led to the 
creation of an object.

Integrity (HS)

Encapsulation (HS & DS)

Non-Repudiation (HS & DS)

A smart contract cannot interfere with 
objects created by another contract 
(except if defined by that contract).

Misbehaviour is detectable: there are 
evidences of misbehaviour pointing to 
the faulty parties or shards.

Only valid & non-conflicting transactions 
will be executed.
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Performance

https://github.com/chainspace

S-BAC protocol 
implemented in Java

Python contract 
environment

Everything is released as open source software

Deployed and tested on 
Amazon AWS

▪What did we implemented?

Based on 
BFT-SMaRt

1. Helps developers
2. Simulation of the checker
3. No need for full deployment



Performance

▪How the number of shards influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Number of Shards



Performance

▪How does the size of the shard influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Nodes per Shard



Performance

▪How the number of inputs influence the TPS?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

TPS VS Number of Inputs



Performance

▪How does the latency vary under different system loads?

(standard setup: 2 shards, 4 nodes/shard, 20 runs/data point)

Probability VS Latency



Conclusions

▪What else is in the paper?

Cross shard transactions

Real world applications
(smart metering, …)

Smart contracts 
benchmarking

And much more…



Conclusions

▪What did we talk about?

Scalable smart contract platform

Supporting PETs by Design

contribution I

contribution II



Conclusions

▪Main take-aways

sharding scalability

execution 
/ checker

privacy 
by design



Conclusions

▪Future Works

1. How to recover from malicious shards?

2. How can a smart contract creator avoid 
dishonest shards?



Conclusions

▪Future Works

3. How to bootstrap the system?

4. How to incentivise nodes?



Mustafa Al-Bassam
m.albassam@cs.ucl.ac.uk

Questions?

Thank you for your attention
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